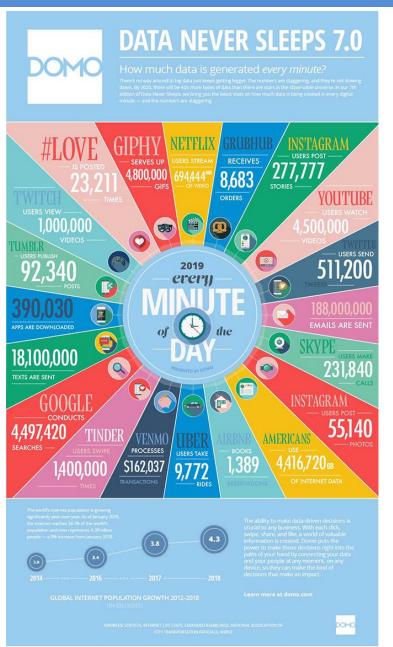
Condor Cloud: Accelerating material discovery


Research IT Club

Daniel Reta

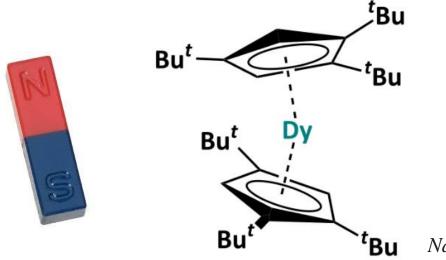
daniel.reta@manchester.ac.uk

Thirst for data

2018: **2.5 quintillion** bytes per day.

2020: 40x more bytes of data than stars in the universe

<u>Cost</u>:


2029: Data centres will triple power consumption.^[1]

2040: 14 % of global green house emissions.^[2]

[1]: Page 12 in "2015 international technology roadmap for semiconductors itrs"

[2]: The Guardian, Dec. 2017. "tsunami of data could consume fifth global electricity by 2025".

Molecules as candidates for high-density data storage

SMM: Single Molecule Magnet

Nature, 2017, 548, 439-442

Nanosized:

Retain information at the molecular level.

Solution processable:

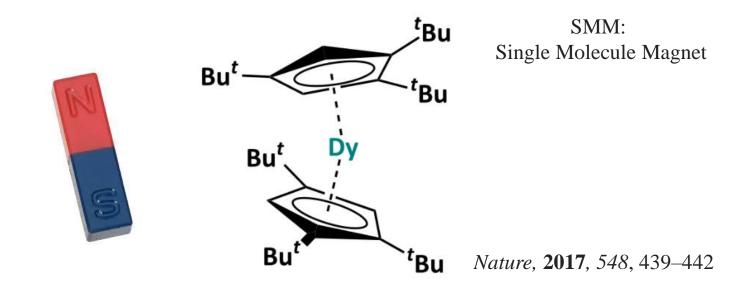
Deposition over surfaces.

Reproducible:

Arrays of identical bits.

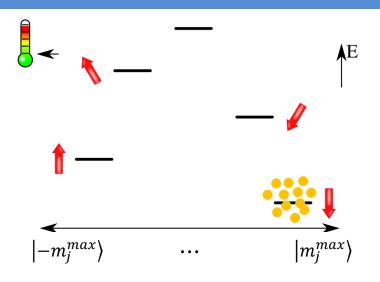
Delicate:

Air and temperature sensitive.


Not entirely molecular:

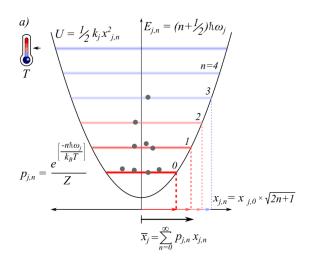
Properties change with surroundings.

Operational:


Information is lost @ RT.

Molecules as candidates for high-density data storage

Our aim is to propose design strategies that improve performance.


Where Amazon Web Services (AWS) Condor becomes handy

Master matrix:

$$\frac{d}{dt}p_i(t) = \sum_{f \neq i} [\gamma_{if}p_f(t) - \gamma_{fi}p_i(t)]$$

To calculate γ_{if} one has to repeat many nearly identical calculations.

Molecule with *N* atoms:

3*N*-6 modes. 4 points each.

$$N = 90 \rightarrow 1056 \text{ jobs}$$

~47k jobs, 2 weeks limit

Why AWS Condor vs other architectures

Required program:

Molcas

Runs in 1 core (no need for MPIs).

~1 GB memory per job.

4-6 hours per job.

Installed in AWS – spin up an instance with program image for each job.

Desired performance:

• As large of a throughput as possible.

AWS Condor specifics

• **Spot** *vs* on-demand requests for computing nodes:

Using spare capacity is 80% cheaper – no priority over on-demand users.

• Instance type: **r5.large**

1 computing node, containing 2 cores (halves the requirements).

8 GB each core.

• **Price** (https://aws.amazon.com/ec2/spot/pricing/):

\$0.021/hour (*vs* \$0.126/hour on-demand)

Changes to standard Condor submission script:

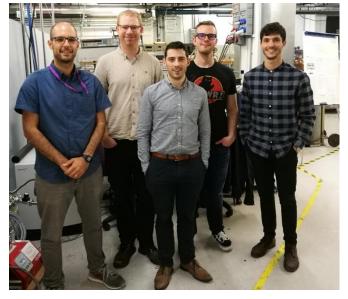
+MayUseAWS=True

• Internal script that boosts throughput by monitoring queued jobs – submission in batches.

Results & conclusions

~ 1500 jobs per day, using 1600 cores at a time:
 32x throughput increase vs CSF.

• Price:


On r5.large, 5 hrs job =
$$\$0.1$$

 $\rightarrow 47$ k jobs = 23.5 k nodes = $\$2.35$ k

AWS Condor	CSF	2019

• Proof of concept:

If you have a computational problem that is highly parallel, AWS Condor is an ideal solution - all necessary tools and expertise are now tested, reliable and user-friendly, so go talk to the Research IT.

Acknowledgements

Dr. N. F. Chilton

Dr. D. Mills

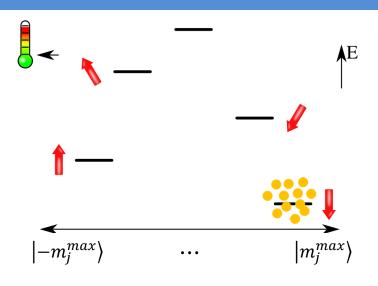
Dr. C. Goodwin

Dr. F. Ortu

The University of Manchester

Chilton group

The people who made this work:


Daniel Corbett

Dr. Chris Paul

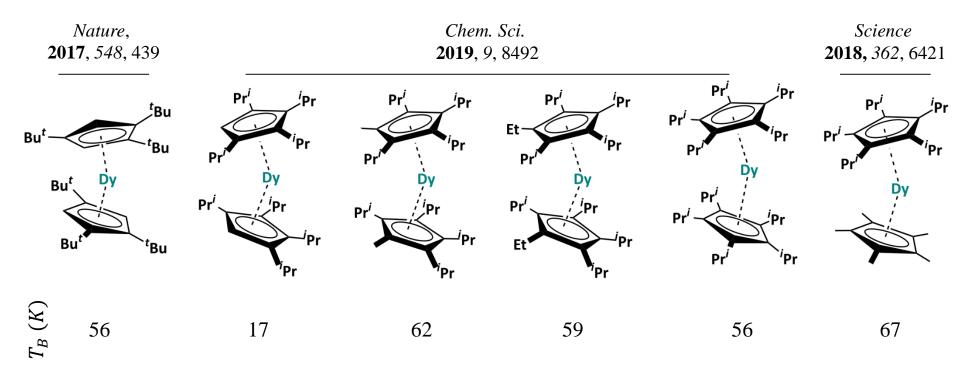
Simon Hood

its-ri-team@manchester.ac.uk

Our approach to ab initio spin dynamics

Master matrix:

$$\frac{d}{dt}p_i(t) = \sum_{f \neq i} [\gamma_{if}p_f(t) - \gamma_{fi}p_i(t)]$$

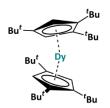

Markov-process. Spin dynamics independent of molecular dynamics.

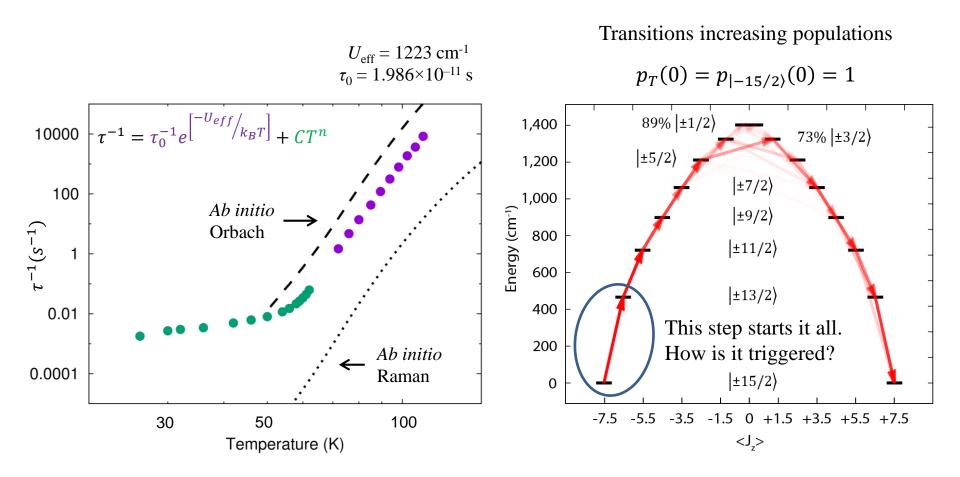
Construct matrix with transition rates γ_{if} as elements: Set of LDE.

Diagonal elements $\gamma_{ii} = \sum_{i \neq f} -\gamma_{if}$ ensures conservation of population.

Eigenvalues are $-\frac{1}{\tau_k}$. One is zero, representing equilibrium.

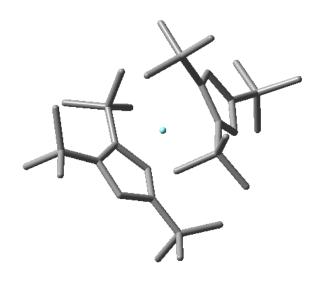
Systems studied

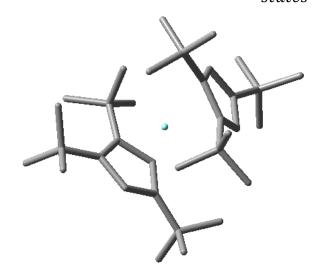



Geometry optimisation: Gaussian 09, PBE, GD3,

Dy → Y (Iso=162.5) Stuttgart ECP, cc-pVTZ Cp C, cc-pVDZ remaining, mode energies corrected against IR.

Electronic structure: MOLCAS, CAS(9,7)SCF-SO-RASSI, Sextets, S.A. 21 roots, Dy ANO-RCC-VTZP, Cp C ANO-RCC-VDZP, ANO-RCC-VDZ remaining, $(3N_{atoms}-6)\cdot N_{distortions}$ CASSCF calculations.


Ab initio spin dynamics: Results



C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, *Nature*, **2017**, *548*, 439

Ab initio spin dynamics: Results

$$460 < E_{mode}(cm^{-1}) < 470$$

 $\Delta E_{states} = 461 (cm^{-1})$

Transitions increasing populations

$$p_{T}(0) = p_{|-15/2\rangle}(0) = 1$$

$$1,400$$

$$1,200$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,000$$

$$1,00$$